When Symmetrization Guarantees Synchronization in Directed Networks

نویسندگان

  • Igor Belykh
  • Martin Hasler
  • Vladimir N. Belykh
چکیده

We review and illustrate our recent results on globally stable synchronization in directed oscillator networks. We consider asymmetrically connected networks with node balance, the property that the sum of the coupling coefficients of all edges directed to a node equals the sum of the coupling coefficients of all the edges directed outward from the node. We show that for such directed but node balanced networks, it is sufficient to symmetrize all connections by replacing a unidirectional coupling with a bidirectional coupling of half the coupling strength. The synchronization condition for the symmetrized network then guarantees synchronization in the original directed network. By considering an example of coupled driven pendula, we show how to prove global stability of synchronization in a concrete unidirectional network. We also discuss the relation between local and global synchronization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization in asymmetrically coupled networks with node balance.

We study global stability of synchronization in asymmetrically connected networks of limit-cycle or chaotic oscillators. We extend the connection graph stability method to directed graphs with node balance, the property that all nodes in the network have equal input and output weight sums. We obtain the same upper bound for synchronization in asymmetrically connected networks as in the network ...

متن کامل

Synchronization for Complex Dynamic Networks with State and Coupling Time-Delays

This paper is concerned with the problem of synchronization for complex dynamic networks with state and coupling time-delays. Therefore, larger class and more complicated complex dynamic networks can be considered for the synchronization problem. Based on the Lyapunov-Krasovskii functional, a delay-independent criterion is obtained and formulated in the form of linear matrix inequalities (LMIs)...

متن کامل

Synchronization analysis of complex dynamical networks with hybrid coupling with application to Chua’s circuit

Complex dynamic networks have been considered by researchers for their applications in modeling and analyzing many engineering issues. These networks are composed of interconnected nodes and exhibit complex behaviors that are resulted from interactions between these nodes. Synchronization, which is the concept of coordinated behavior between nodes, is the most interested behavior in these netwo...

متن کامل

Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control

In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...

متن کامل

Adaptive Cluster Synchronization of Directed Complex Networks with Time Delays

This paper studied the cluster synchronization of directed complex networks with time delays. It is different from undirected networks, the coupling configuration matrix of directed networks cannot be assumed as symmetric or irreducible. In order to achieve cluster synchronization, this paper uses an adaptive controller on each node and an adaptive feedback strategy on the nodes which in-degree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007